By Topic

Neural solution to the multitarget tracking data association problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Sengupta ; Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA ; R. A. Iltis

The problem of tracking multiple targets in the presence of clutter is addressed. The joint probabilistic data association (JPDA) algorithm has been previously reported to be suitable for this problem in that it makes few assumptions and can handle many targets as long as the clutter density is not very high. However, the complexity of this algorithm increases rapidly with the number of targets and returns. An approximation of the JPDA that uses an analog computational network to solve the data association problem is suggested. The problem is viewed as that of optimizing a suitably chosen energy function. Simple neural-network structures for the approximate minimization of such functions have been proposed by other researchers. The analog network used offers a significant degree of parallelism and thus can compute the association probabilities more rapidly. Computer simulations indicate the ability of the algorithm to track many targets simultaneously in the presence of moderately dense clutter.<>

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:25 ,  Issue: 1 )