By Topic

Global adaptive output-feedback control of nonlinear systems. I. Linear parameterization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Marino, R. ; Dipartimento di Ingegneria Elettron., Roma Univ., Italy ; Tomei, P.

The problem of designing global adaptive output-feedback tracking controls for single-input single-output nonlinear systems which are linear with respect to the input and an unknown constant parameter vector is addressed. A class of systems which can be globally controlled by adaptive observer-based output-feedback compensators is identified by geometric coordinate-free conditions. The nonlinearities depend on the output only: growth conditions are not required. Each system in the class admits observers with linear error dynamics and is minimum phase, i.e., it has linear asymptotically stable zero dynamics. When the parameters are known, new sufficient conditions for global output-feedback tracking control are obtained as a special case. For linear systems the result recovers a well-known fundamental adaptive result. Three examples are discussed

Published in:

Automatic Control, IEEE Transactions on  (Volume:38 ,  Issue: 1 )