By Topic

Application of massively parallel signal processing architectures to GPS/inertial systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
S. Kohli ; Interstate Electronics Corp., Anaheim, CA, USA

Summary form only given. The author considers the use of a massively parallel signal processing architecture in GPS (Global Positioning System)/inertial sensors to acquire satellite signals in fractions of a second (vs. tens of seconds today), as well as the GPS-inertial synchronization and mechanization required to extend the current application of Kalman filtering to estimating and eliminating continuous-wave jammer has also been explored. Satellite signal acquisition results based on analyses, verified by simulation and live data, have been obtained for both C/A and P-code acquisition in the presence of jammer. Similar data have been obtained for tracking in a high jamming environment. All results are with the Honeywell GG1308 RLG-based IRU and an IEC GPS sensor

Published in:

Position Location and Navigation Symposium, 1992. Record. 500 Years After Columbus - Navigation Challenges of Tomorrow. IEEE PLANS '92., IEEE

Date of Conference:

23-27 Mar 1992