By Topic

Thermal grating-mediated wave mixing and beam amplification in nematic liquid crystal thin films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. Y. Yan ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; I. C. Khoo

A model is presented of thermal grating-mediated wave mixing and amplification. The model includes a strong pump beam, a weak probe beam, and a first-order diffracted beam. The coupled Maxwell's wave equations and the thermal diffusion equation are solved using a self-consistent formalism. The influence of various input beam parameters (the pump to probe beam intensity ratio, beam intensities, crossing angle, wavelength) and sample parameters (the thermal nonlinear coefficient, thermal conductivity, sample thickness) on the wave mixing effects is considered. Some recently observed infrared beam amplification effects have been qualitatively described by the theory of the optimum configuration for signal (probe) beam amplification with nematic liquid crystals. The results are important for optical phase conjugation and self-oscillation processes involving infrared lasers, and demonstrate the particular usefulness of liquid crystals for these applications

Published in:

IEEE Journal of Quantum Electronics  (Volume:25 ,  Issue: 3 )