Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at We apologize for any inconvenience.
By Topic

Double-exponential complexity of computing a complete set of AC-unifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kapur, D. ; Dept. of Comput. Sci., State Univ. of New York, Albany, NY, USA ; Narendran, P.

An algorithm for computing a complete set of unifiers for two terms involving associative-commutative function symbols is presented. It is based on a nondeterministic algorithm given by the authors in 1986 to show the NP-completeness of associative-commutative unifiability. The algorithm is easy to understand, and its termination can be easily established. Its complexity is easily analyzed and shown to be doubly exponential in the size of the input terms. The analysis also shows that there is a double-exponential upper bound on the size of a complete set of unifiers of two input terms. Since there is a family of simple associative-commutative unification problems which have complete sets of unifiers whose size is doubly exponential, the algorithm is optimal in its order of complexity in this sense

Published in:

Logic in Computer Science, 1992. LICS '92., Proceedings of the Seventh Annual IEEE Symposium on

Date of Conference:

22-25 Jun 1992