By Topic

A quadratic time algorithm for the minmax length triangulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. Edelsbruneer ; Dept. of Comput. Sci., Illinois Univ., Urbana, IL, USA ; T. S. Tan

It is shown that a triangulation of a set of n points in the plane that minimizes the maximum edge length can be computed in time O(n2). The algorithm is reasonably easy to implement and is based on the theorem that there is a triangulation with minmax edge length that contains the relative neighborhood graph of the points as a subgraph. With minor modifications the algorithm works for arbitrary normed metrics

Published in:

Foundations of Computer Science, 1991. Proceedings., 32nd Annual Symposium on

Date of Conference:

1-4 Oct 1991