Cart (Loading....) | Create Account
Close category search window

Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pati, Y.C. ; Dept. of Electr. Eng., Maryland Univ., College Park, MD, USA ; Krishnaprasad, P.S.

A representation of a class of feedforward neural networks in terms of discrete affine wavelet transforms is developed. It is shown that by appropriate grouping of terms, feedforward neural networks with sigmoidal activation functions can be viewed as architectures which implement affine wavelet decompositions of mappings. It is shown that the wavelet transform formalism provides a mathematical framework within which it is possible to perform both analysis and synthesis of feedforward networks. For the purpose of analysis, the wavelet formulation characterizes a class of mappings which can be implemented by feedforward networks as well as reveals an exact implementation of a given mapping in this class. Spatio-spectral localization properties of wavelets can be exploited in synthesizing a feedforward network to perform a given approximation task. Two synthesis procedures based on spatio-spectral localization that reduce the training problem to one of convex optimization are outlined

Published in:

Neural Networks, IEEE Transactions on  (Volume:4 ,  Issue: 1 )

Date of Publication:

Jan 1993

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.