By Topic

Optimal hydrogenerator governor tuning with a genetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lansberry, J.E. ; Illinois Univ., Urbana, IL, USA ; Wozniak, L. ; Goldberg, D.E.

The authors investigate the application of a genetic algorithm for optimizing the gains of a proportional-plus-integral controller for a hydrogenerator plant. The genetic algorithm was applied to optimal tuning of a governor for a hydrogenerator plant. Analog and digital simulation methods are compared for use in conjunction with the genetic algorithm optimization process. It is shown that analog plant simulation provides advantages in speed over digital plant simulation. This speed advantage makes application of the genetic algorithm in an actual plant environment feasible. The genetic algorithm is shown to possess the ability to reject plant noise and other system anomalies in its search for optimizing solutions

Published in:

Energy Conversion, IEEE Transactions on  (Volume:7 ,  Issue: 4 )