By Topic

Higher order absorbing boundary conditions for the finite-difference time-domain method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tirkas, P.A. ; Arizona State Univ., Tempe, AZ, USA ; Balanis, C.A. ; Renaut, R.A.

Higher-order absorbing boundary conditions are introduced and implemented in a finite-difference time-domain (FDTD) computer code. Reflections caused by the absorbing boundary conditions are examined. For the case of a point source radiating in a finite computational domain, it is shown that the error decreases as the order of approximation of the absorbing boundary condition increases. Fifth-order approximation reduces the normalized reflections to less than 0.2%, whereas the widely used second-order approximation produces about 3% reflections. A method for easy implementation of any order approximation is also presented

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:40 ,  Issue: 10 )