By Topic

Design considerations for a multiple-quantum-well nonresonant surface-normal modulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chin, M.K. ; Dept. of Electr. Eng., California Univ., La Jolla, CA, USA

It is shown that by using optimal quantum-well thickness, and by using a symmetric back-to-back p-i-n structure, a non-Fabry-Perot surface-normal reflection modulator based on the quantum confined Stark effect in a GaAs/AlGaAs multiple-quantum-well (MQW) can provide intensity modulation with (a) at least 10-dB contrast ratio, (b) a drive voltage less than 10 V, and (c) an active-layer thickness less than 4 mu m. The drive voltage for a given contrast ratio can be minimized by using the quantum-well structure with the maximum Delta alpha /F.<>

Published in:

Photonics Technology Letters, IEEE  (Volume:4 ,  Issue: 12 )