By Topic

A theory and implementation of sequential hardware equivalence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Pixley, C. ; Microelectronics & Computer Technology Corp., Austin, TX, USA

A theory of sequential hardware equivalence is presented. This theory includes the notions of gate-level model (GLM), hardware finite state machine (HFSM), quotient machine, state equivalence (~), alignability, resetability, essential resetability, isomorphism, and sequential hardware equivalence. The theory is motivated by (1) the observation that it is impossible to control the initial state of a machine when it is powered on and (2) the desire to decide equivalence of two designs based solely on their netlists and logic device models, without knowledge of intended initial states or intended environments. Algorithms based upon a binary decision diagram (BDD) implementation of predicate calculus over Boolean domains are presented. This calculus is employed to calculate properties of hardware designs. Experimental results based upon these algorithms as implemented in the MCC sequential equivalence tool (SET) are presented

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:11 ,  Issue: 12 )