By Topic

Optimal thermal design of air cooled forced convection finned heat sinks-experimental verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Knight, R.W. ; Dept. of Mech. Eng., Auburn Univ., AL, USA ; Goodling, J.S. ; Gross, B.E.

D.B. Tuckerman and R.F.W. Pease (1981) showed that microchannels with water flow could be used to cool VLSI systems. Their work required the flow to be laminar, and the channel system, or fin array, was optimized analytically. Recently, it has been shown that, for some geometries and fluid pressure drops, a lower thermal resistance can be found if the channels are designed to allow turbulent flow. The current work uses the optimization scheme developed by R.W. Knight et al. (1991 and in this issue) to design three air-cooled aluminum finned arrays, which were built and tested experimentally. The thermal performances of the fin array designs, one containing 5 fins, one with 11 fins, and one with the predicted optimum of 8 fins, are compared. All arrays had turbulent flow and pressure drop across them, and all fins were the same length and width. The best thermal performance was obtained with the design predicted to be optimal. The scheme can be applied to a variety of heat sink design applications, including water-cooled microchannels

Published in:

Components, Hybrids, and Manufacturing Technology, IEEE Transactions on  (Volume:15 ,  Issue: 5 )