Cart (Loading....) | Create Account
Close category search window

Investigation of nonlinearities in the force control of real robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gonzalez, J.J. ; Dept. of Electr. Eng., Colorado State Univ., Fort Collins, CO, USA ; Widmann, G.R.

Some practical issues associated with the force control of manipulators are investigated. How the stability of a force controlled system is affected by a variety of inherent manipulator nonlinearities, such as control signal saturation, slip-stick friction, and sampled-data controller implementation is examined. In order to improve stable system performance, the inclusion of a high gain inner position loop with environmental force compensation is explored. It is demonstrated that the inclusion of the inner position loop will minimize the effects due to slip-stick friction and thereby improve the predictability in the steady-state error. A discrete-time, nonlinear robotic plant model suitable for force control investigations is developed and is demonstrated to provide an accurate prediction of actual system responses. Theoretical conclusions are supported by experiments performed with the PUMA 560 industrial robot testbed facility developed at Colorado State University

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:22 ,  Issue: 5 )

Date of Publication:

Sep/Oct 1992

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.