By Topic

No-load induction motor core losses using a combined finite-element/state-space model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jamil, M.K. ; ECE Dept., Clarkson Univ., Potsdam, NY, USA ; Baldassari, P. ; Demerdash, N.A.

A combined finite-element/state-space (CFE-SS) modeling is used to compute the no-load core losses in three-phase induction motors. The CFE-SS is totally within the embrace of the ABC frame of reference. Consequently, the current, flux linkages, winding magnetomotive forces, and flux density waveforms include as many space harmonic terms, caused by motor magnetic circuit geometries and winding layouts, as necessary. The resulting harmonically rich flux density waveforms are used to calculate the no-load core losses (hysteresis and eddy current losses) of a case-study three-phase, 1.2-hp, squirrel-cage induction motor. In addition, those results are compared with conventionally computed core losses obtained using only the fundamental components of the flux density waveforms. A substantial increase in the core losses due to the significant harmonic contents of the flux density waveforms is reported

Published in:

Magnetics, IEEE Transactions on  (Volume:28 ,  Issue: 5 )