By Topic

Blind equalization without gain identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Verdú, S. ; Dept. of Electr. Eng., Princeton Univ., NJ, USA ; Anderson, B.D.O. ; Kennedy, R.A.

Blind equalization up to a constant gain of linear time-invariant channels is studied. Dropping the requirement of gain identification allows equalizer anchoring. This results in the elimination of a degree of freedom that causes ill-convergence of conventional blind equalizers, and affords the possibility of using simple update rules based on the stochastic approximation of output energy. Unlike conventional blind equalizers, truncations of the nonrecursive infinite-dimensional realizations of those equalizers inherit the convergence properties of their infinitely parametrized counterparts. A globally convergent blind recursive equalizer for channels without all-pass sections is obtained based on the exact equalization of the minimum-phase part of the channel and the identification of its nonminimum-phase zeros

Published in:

Information Theory, IEEE Transactions on  (Volume:39 ,  Issue: 1 )