By Topic

Noncoherent detection in asynchronous multiuser channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Varanasi, M.K. ; Dept. of Electr. & Comput. Eng., Colorado Univ., Boulder, CO, USA

The noncoherent demodulation of multiple differentially phase-shift-keyed signals transmitted simultaneously over an asynchronous code-division multiple-access (CDMA) channel with white Gaussian background noise is considered. A class of bilinear detectors is defined with the objective of obtaining the optimal bilinear detector. The optimality criterion considered is near-far resistance that denotes worst-case asymptotic efficiency over the signal energies and phases which are unknown at the receiver. The optimal bilinear detector is therefore obtained by solving a minimax optimization problem. In the finite packet length case, this detector is shown to be a time-varying multiinput multioutput linear decorrelating filter followed by differential decision logic. In the limit as packet lengths go to infinity, the time-varying decorrelating detector is replaced by a time-invariant multiinput multioutput decorrelating filter. Several properties of the optimally near-far resistant detector are established

Published in:

Information Theory, IEEE Transactions on  (Volume:39 ,  Issue: 1 )