By Topic

Optimal generating kernels for image pyramids by piecewise fitting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chin, F. ; Dept. of Comput. Sci., Hong Kong Univ., Hong Kong ; Choi, A. ; Luo, Y.

A novel class of generating kernels for image pyramids is introduced. When these kernels are convolved with intensity functions of images, continuous piecewise surfaces composed of polynomial tensor products are fitted to the intensity functions. The fittings are optimal in the sense that the mean square error between them and the original intensity functions is minimized. Two members of the class are introduced, and symmetry, normalization, unimodality, and equal contribution properties are proved. These kernels possess attractive properties such as small window size, fast inverse transformation, and minimum error. Experiments show that they compare favorably with existing ones in terms of mean square error

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:14 ,  Issue: 12 )