Cart (Loading....) | Create Account
Close category search window
 

The multiple window parameter transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Califano, A. ; IBM T.J. Watson Res. Center, Yorktown Heights, NY, USA ; Bolle, R.M.

The multiwindow transform, an extension of parameter transform techniques that increase performance and scope by exploiting the long-range correlated information contained in multiple portions of an image, is presented. Multiple-window transforms allow the extraction of high-dimensional features with improvement in accuracy over conventional techniques while keeping linear to low-order-polynomial computational and space requirements with respect to image size and dimensionality of the features. Using correlated information provides a direct link between extracted features and supporting regions in the image. This, coupled with evidence integration techniques, is used to suppress noisy or nonexistent feature hypotheses. Parameter spaces are implemented as constraint satisfaction networks, where feature hypotheses with overlapping support in the image compete. After an iterative relaxation phase, surviving hypotheses have disjoint support, forming a segmentation of the image. Examples show the performance and provide insight about the behavior

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:14 ,  Issue: 12 )

Date of Publication:

Dec 1992

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.