By Topic

An entropy-based measure of software complexity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
W. Harrison ; PSU Center for Software Quality Res., Portland State Univ., OR, USA

It is proposed that the complexity of a program is inversely proportional to the average information content of its operators. An empirical probability distribution of the operators occurring in a program is constructed, and the classical entropy calculation is applied. The performance of the resulting metric is assessed in the analysis of two commercial applications totaling well over 130000 lines of code. The results indicate that the new metric does a good job of associating modules with their error spans (averaging number of tokens between error occurrences)

Published in:

IEEE Transactions on Software Engineering  (Volume:18 ,  Issue: 11 )