Cart (Loading....) | Create Account
Close category search window
 

Inversion of snow parameters from passive microwave remote sensing measurements by a neural network trained with a multiple scattering model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Leung Tsang ; Dept. of Electr. Eng., Washington Univ., Seattle, WA, USA ; Zhengxiao Chen ; Oh, S. ; Marks, R.J.
more authors

The inversion of snow parameters from passive microwave remote sensing measurements is performed with a neural network trained with a dense-media multiple-scattering model. The input-output pairs generated by the scattering model are used to train the neural network. Simultaneous inversion of three parameters, mean-grain size of ice particles in snow, snow density, and snow temperature from five brightness temperatures, is reported. It is shown that the neural network gives good results for simulated data. The absolute percentage errors for mean-grain size of ice particles and snow density are less than 10%, and the absolute error for snow temperature is less than 3 K. The neural network with the trained weighting coefficients of the three-parameter model is also used to invert SSMI data taken over the Antarctic region

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:30 ,  Issue: 5 )

Date of Publication:

Sep 1992

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.