Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Dual- and Triple-Mode Branch-Line Ring Resonators and Harmonic Suppressed Half-Ring Resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Choon Sik Cho ; Sch. of Electron., Telecommun. & Comput. Eng., Hankuk Aviation Univ., Goyang ; Lee, J.W. ; Jaeheung Kim

Ring resonators have been widely used for various applications. Dual-mode ring resonators have also been investigated due to their applicability to multifrequency mode requirement. In this paper, dual-mode ring resonators using a branch line are designed along with a systematic approach. Triple-mode branch-line ring resonators are also designed adding two branch lines to the ring resonator. Adding more branch lines, multimode resonators can be realized based on the design procedure developed here. The location of the branch lines determines the additional resonant frequencies other than the fundamental resonant frequency generated by the enclosing ring. Furthermore, half-ring resonators working at 2.5 GHz are proposed for suppressing multiple harmonics (second and third harmonics) and providing size reduction with employment of various physical configurations. Equalizing the even- and odd-mode phase delays, harmonics are suppressed effectively in the design of half-ring resonators. Double half-ring resonators with a long opening gap are investigated to continuously decrease the resonant frequency. An open-loop structure provides flexible design and lowers the resonant frequency. Two dual-mode ring resonators and one triple-mode ring resonator are simulated and fabricated along with three different half-ring resonators

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:54 ,  Issue: 11 )