By Topic

New Techniques for the Analysis and Design of Coupled-Oscillator Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Georgiadis ; Dept. of Commun. Eng., Cantabria Univ., Santander ; A. Collado ; A. Suarez

An in-depth analysis of the nonlinear dynamics of coupled-oscillator arrays is presented for a better understanding of their complex autonomous behavior. In one-dimensional arrays, the constant inter-stage phase shift is varied by simultaneously detuning the two outermost oscillators in opposite directions. Thus, the array can be considered as a two-parameter system. Here, a two-parameter stability analysis of the oscillator array is carried out, investigating the phenomena that limit the achievable values of constant inter-stage phase shift under both weak and strong coupling conditions. The gradual evolution of the system behavior with increasing coupling strength is studied. A semianalytical approach is presented for an efficient design of the oscillator array, avoiding the computational expensiveness of harmonic balance (HB) in systems with a high number of oscillator elements. The proposed method, valid for weak coupling, uses a perturbation model of the elementary oscillator obtained with HB so it is of general application to any oscillator topology with accurate descriptions of its linear and nonlinear components. Approaches for the stability and phase-noise analyses based on this formulation are also presented. The new techniques have been applied to the design of a coupled system of three oscillators at 6 GHz. The results have been successfully compared with full HB simulations and with measurements

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:54 ,  Issue: 11 )