By Topic

Prediction of Continental-Scale Evapotranspiration by Combining MODIS and AmeriFlux Data Through Support Vector Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Feihua Yang ; Dept. of Geogr., Wisconsin Univ., Madison, WI ; White, M.A. ; Michaelis, A.R. ; Ichii, K.
more authors

Application of remote sensing data to extrapolate evapotranspiration (ET) measured at eddy covariance flux towers is a potentially powerful method to estimate continental-scale ET. In support of this concept, we used meteorological and flux data from the AmeriFlux network and an inductive machine learning technique called support vector machine (SVM) to develop a predictive ET model. The model was then applied to the conterminous U.S. In this process, we first trained the SVM to predict 2000-2002 ET measurements from 25 AmeriFlux sites using three remotely sensed variables [land surface temperature, enhanced vegetation index (EVI), and land cover] and one ground-measured variable (surface shortwave radiation). Second, we evaluated the model performance by predicting ET for 19 flux sites in 2003. In this independent evaluation, the SVM predicted ET with a root-mean-square error (rmse) of 0.62 mm/day (approximately 23% of the mean observed values) and an R2 of 0.75. The rmse from SVM was significantly smaller than that from neural network and multiple-regression approaches in a cross-validation experiment. Among the explanatory variables, EVI was the most important factor. Indeed, removing this variable induced an rmse increase from 0.54 to 0.77 mm/day. Third, with forcings from remote sensing data alone, we used the SVM model to predict the spatial and temporal distributions of ET for the conterminous U.S. for 2004. The SVM model captured the spatial and temporal variations of ET at a continental scale

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:44 ,  Issue: 11 )