Cart (Loading....) | Create Account
Close category search window
 

Merging SeaWiFS and MODIS/Aqua Ocean Color Data in North and Equatorial Atlantic Using Weighted Averaging and Objective Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Pottier, C. ; Space Oceanogr. Div., Collecte Localisation Satellites, Ramonville-Saint-Agne ; Garcon, V. ; Larnicol, G. ; Sudre, J.
more authors

Two approaches of ocean color data merging were tested and compared in the North and Equatorial Atlantic Basin: the weighted averaging and the objective analysis. The datasets used were the daily level-3 binned data of chlorophyll-a from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer on the Aqua satellite over the year 2003, which is the first common full year of operation. Since they represent input for both approaches, matchups between the satellite and the in situ data from the SeaWiFS Bio-optical Archive and Storage System and the Atlantic Meridional Transect were first studied to compute a spatial map of the root mean-square error and of the bias. Because of the log distribution of the chlorophyll fields, each approach was applied to untransformed and log-transformed values. The application of the weighted averaging to log-transformed values does not show significant differences in comparison to its application to untransformed values. This is not the case, however, for the objective analysis that gives better results when applied to log-transformed values. Both approaches give combined chlorophyll data of equivalent quality, although the objective analysis could be improved with a better statistical characterization of noise and signal covariance. The main advantage of the objective analysis is its ability to interpolate in space (and time) by taking into account the characteristic scales of chlorophyll-a. As a result, the spatial coverage of the combined data is at least twice as large in the case of objective analysis than weighted averaging

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:44 ,  Issue: 11 )

Date of Publication:

Nov. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.