By Topic

Polarimetric Weather Radar Retrieval of Raindrop Size Distribution by Means of a Regularized Artificial Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

The raindrop size distribution (RSD) is a critical factor in estimating rain intensity using advanced dual-polarized weather radars. A new neural-network algorithm to estimate the RSD from S-band dual-polarized radar measurements is presented. The corresponding rain rates are then computed assuming a commonly used raindrop diameter speed relationship. Numerical simulations are used to investigate the efficiency and accuracy of this method. A stochastic model based on disdrometer measurements is used to generate realistic range profiles of the RSD parameters, while a T-matrix solution technique is adopted to compute the corresponding polarimetric variables. The error analysis, which is performed in order to evaluate the expected errors of this method, shows an improvement with respect to other methodologies described in the literature. A further sensitivity evaluation shows that the proposed technique performs fairly well even for low specific differential phase-shift values

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:44 ,  Issue: 11 )