Cart (Loading....) | Create Account
Close category search window

A Continuous-Time Programmable Digital FIR Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yee William Li ; Dept. of Electr. Eng., Columbia Univ., New York, NY ; Shepard, Kenneth L. ; Tsividis, Y.

In this paper, we describe the design and implementation of a continuous-time finite-impulse-response processor chain, which includes a 6-bit asynchronous ADC, an asynchronous digital core, and an 8-bit asynchronous DAC designed in TSMC 0.25-mum technology. The continuous-time, discrete-amplitude systems combine benefits associated with analog and digital systems. Discrete-amplitude representations leverage the noise immunity and robustness of digital implementations. Continuous-time, nonsampled operation prevents aliasing and reduces the in-band quantization noise associated with the aliasing of subharmonic components. We present measurement results demonstrating an audio low-pass filter with a bandwidth of 6.0 kHz

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:41 ,  Issue: 11 )

Date of Publication:

Nov. 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.