Cart (Loading....) | Create Account
Close category search window
 

A New On-Chip Substrate-Coupled Inductor Model Implemented With Scalable Expressions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lai, I.C.H. ; Sch. of Frontier Sci., Univ. of Tokyo, Chiba, Japan ; Fujishima, M.

Accurate modeling of the on-chip inductor is essential for the design of high-speed, low-power, and low-noise radio-frequency integrated circuits. The conventional model has a measurable discrepancy as the current flowing in the substrate is not correctly considered. The substrate-coupled inductor model, however, considers the losses generated in both the vertical and horizontal directions. This model gives an intelligent explanation of the reduction in equivalent resistance between terminals with increasing frequency as well as the inductance and quality factor (Q-factor). In order to implement a fully scalable model, the circuit elements in the substrate-coupled inductor model are expressed as monomial equations in terms of physical geometry. These equations consider the physical implications of the parameters as well as employing a mathematical fit for extrapolation. Measurements are made on inductors fabricated using a standard 0.35-mum CMOS process and a 0.15-mum silicon-on-insulator CMOS process to successfully verify this model.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:41 ,  Issue: 11 )

Date of Publication:

Nov. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.