Cart (Loading....) | Create Account
Close category search window
 

Bandwidth Extension Techniques for CMOS Amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shekhar, S. ; Dept. of Electr. Eng., Univ. of Washington, Seattle, WA ; Walling, J.S. ; Allstot, D.J.

Inductive-peaking-based bandwidth extension techniques for CMOS amplifiers in wireless and wireline applications are presented. To overcome the conventional limits on bandwidth extension ratios, these techniques augment inductive peaking using capacitive splitting and magnetic coupling. It is shown that a critical design constraint for optimum bandwidth extension is the ratio of the drain capacitance of the driver transistor to the load capacitance. This, in turn, recommends the use of different techniques for different capacitance ratios. Prototype wideband amplifiers in 0.18-mum CMOS are presented that achieve a measured bandwidth extension ratio up to 4.1 and simultaneously maintain high gain (>12 dB) in a single stage. Even higher enhancement ratios are shown through the introduction of a modified series-peaking technique combined with staggering techniques. Ultra-wideband low-noise amplifiers in 0.18-mum CMOS are presented that exhibit bandwidth extension ratios up to 4.9

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:41 ,  Issue: 11 )

Date of Publication:

Nov. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.