Cart (Loading....) | Create Account
Close category search window
 

A Cross Validation Study of Deep Brain Stimulation Targeting: From Experts to Atlas-Based, Segmentation-Based and Automatic Registration Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Castro, F.J.S. ; Signal Process. Inst., Ecole Polytech. Fed. de Lausanne ; Pollo, C. ; Meuli, R. ; Maeder, P.
more authors

Validation of image registration algorithms is a difficult task and open-ended problem, usually application-dependent. In this paper, we focus on deep brain stimulation (DBS) targeting for the treatment of movement disorders like Parkinson's disease and essential tremor. DBS involves implantation of an electrode deep inside the brain to electrically stimulate specific areas shutting down the disease's symptoms. The subthalamic nucleus (STN) has turned out to be the optimal target for this kind of surgery. Unfortunately, the STN is in general not clearly distinguishable in common medical imaging modalities. Usual techniques to infer its location are the use of anatomical atlases and visible surrounding landmarks. Surgeons have to adjust the electrode intraoperatively using electrophysiological recordings and macrostimulation tests. We constructed a ground truth derived from specific patients whose STNs are clearly visible on magnetic resonance (MR) T2-weighted images. A patient is chosen as atlas both for the right and left sides. Then, by registering each patient with the atlas using different methods, several estimations of the STN location are obtained. Two studies are driven using our proposed validation scheme. First, a comparison between different atlas-based and nonrigid registration algorithms with a evaluation of their performance and usability to locate the STN automatically. Second, a study of which visible surrounding structures influence the STN location. The two studies are cross validated between them and against expert's variability. Using this scheme, we evaluated the expert's ability against the estimation error provided by the tested algorithms and we demonstrated that automatic STN targeting is possible and as accurate as the expert-driven techniques currently used. We also show which structures have to be taken into account to accurately estimate the STN location

Published in:

Medical Imaging, IEEE Transactions on  (Volume:25 ,  Issue: 11 )

Date of Publication:

Nov. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.