By Topic

A Distributed End-to-End Reservation Protocol for IEEE 802.11-Based Wireless Mesh Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
E. Carlson ; Telecommun. Networks Group, Berlin Univ. of Technol. ; C. Prehofer ; C. Bettstetter ; H. Karl
more authors

This paper presents an end-to-end reservation protocol for quality-of-service (QoS) support in the medium access control layer of wireless multihop mesh networks. It reserves periodically repeating time slots for QoS-demanding applications, while retaining the distributed coordination function (DCF) for best effort applications. The key features of the new protocol, called "distributed end-to-end allocation of time slots for real-time traffic (DARE), are distributed setup, interference protection, and scheduling of real-time data packets, as well as the repair of broken reservations and the release of unused reservations. A simulation-based performance study compares the delay and throughput of DARE with those of DCF and the priority-based enhanced distributed channel access (EDCA) used in IEEE 802.11e. In contrast to DCF and EDCA, DARE has a low, nonvarying delay and a constant throughput for each reserved flow

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:24 ,  Issue: 11 )