By Topic

Probabilistic Optimal Power Flow in Electricity Markets Based on a Two-Point Estimate Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Verbic, G. ; Fac. of Electr. Eng., Univ. of Ljubljana ; Canizares, C.A.

This paper presents an application of a two-point estimate method (2PEM) to account for uncertainties in the optimal power flow (OPF) problem in the context of competitive electricity markets. These uncertainties can be seen as a by-product of the economic pressure that forces market participants to behave in an "unpredictable" manner; hence, probability distributions of locational marginal prices are calculated as a result. Instead of using computationally demanding methods, the proposed approach needs 2n runs of the deterministic OPF for n uncertain variables to get the result in terms of the first three moments of the corresponding probability density functions. Another advantage of the 2PEM is that it does not require derivatives of the nonlinear function used in the computation of the probability distributions. The proposed method is tested on a simple three-bus test system and on a more realistic 129-bus test system. Results are compared against more accurate results obtained from MCS. The proposed method demonstrates a high level of accuracy for mean values when compared to the MCS; for standard deviations, the results are better in those cases when the number of uncertain variables is relatively low or when their dispersion is not large

Published in:

Power Systems, IEEE Transactions on  (Volume:21 ,  Issue: 4 )