By Topic

Ride-Through Analysis of Doubly Fed Induction Wind-Power Generator Under Unsymmetrical Network Disturbance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Seman, S. ; Helsinki Univ. of Technol. ; Niiranen, J. ; Arkkio, A.

This paper presents a ride-through simulation study of a 2-MW wind-power doubly fed induction generator (DFIG) under a short-term unsymmetrical network disturbance. The DFIG is represented by an analytical two-axis model with constant lumped parameters and by a finite element method (FEM)-based model. The model of the DFIG is coupled with the model of the active crowbar protected and direct torque controlled (DTC) frequency converter, the model of the main transformer, and a simple model of the grid. The simulation results show the ride-through capability of the studied doubly fed wind-power generator. The results obtained by means of an analytical model and FEM model are compared in order to reveal the influence of the different modeling approaches on the short-term transient simulation accuracy

Published in:

Power Systems, IEEE Transactions on  (Volume:21 ,  Issue: 4 )