Cart (Loading....) | Create Account
Close category search window
 

Compression Limit by Third-Order Dispersion in the Normal Dispersion Regime

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Demircan, A. ; Weierstrass Inst. for Appl. Anal. & Stochastics, Berlin ; Kroh, M. ; Bandelow, U. ; Huttl, B.
more authors

Broadband continua at gigahertz rates generated in high-nonlinear dispersion-flattened fibers in the normal dispersion regime near the zero-dispersion wavelength can be used for a subsequent efficient pulse compression, leading to stable high-repetition-rate trains of femtosecond pulses. We show experimentally and theoretically that third-order dispersion defines a critical power, where beyond further compression is inhibited. This fundamental limit is caused by a pulse-breakup

Published in:

Photonics Technology Letters, IEEE  (Volume:18 ,  Issue: 22 )

Date of Publication:

Nov.15, 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.