By Topic

Dual Semiconductor Laser System With Rapid Time-Delay for Ultrafast Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Quast, H. ; Inst. fur Festkorperphys., Technische Univ. Berlin ; Meuer, C. ; Reimann, O. ; Huhse, D.
more authors

We present a dual semiconductor laser system at 1.55 mum with femtosecond pulse widths and very low timing jitter for rapid pump-probe measurements. Synchronizing the two lasers to the same low-noise radio frequency-oscillator allows the use of an electrical phase shifter for the relative time delay between the lasers. This leads to a large scanning window that nearly matches the pulse period of 2.5 ns, as well as achieving a discrete time step of below 100 fs. The timing jitter of the complete dual laser system including all electronics is only 540 fs across the whole time delay. The nonlinear pulse compression using especially designed comb-like dispersion profiled fiber leads to autocorrelation widths of 310 fs. The system performance, i.e., the high time resolution is demonstrated by optical cross correlation of the pump and probe pulse, showing a very low full-width at half maximum of 1.3 ps

Published in:

Photonics Technology Letters, IEEE  (Volume:18 ,  Issue: 22 )