By Topic

A Fully Recurrent Neural Network-Based Model for Predicting Spectral Regrowth of 3G Handset Power Amplifiers With Memory Effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Luongvinh, D. ; Sch. of Electr. Eng., Seoul Nat. Univ. ; Youngwoo Kwon

Efficient and accurate behavioral models of power amplifiers (PAs) with memory effects are important for predicting the distortions generated by PAs in 3G handsets. Conventional recurrent neural network (RNN) has been applied for RF PAs, but its capability to model PAs with memory effects has not been investigated. In this letter, we propose a new fully RNN with Gamma tapped-delay lines suitable for modeling the dynamic behavior of 3G PAs with memory effects. After being trained with wideband code division multiple access (W-CDMA) (3GPP Uplink) signals, the proposed model is validated with not only W-CDMA but also high-speed downlink packet access (3GPP Uplink) signals with higher peak-to-average ratios (PARs), which demonstrates the generality of the model. The comparisons with previous RNN models show that the proposed model offers improved performance in predicting spectral regrowth by reducing errors by 1.7-4dB

Published in:

Microwave and Wireless Components Letters, IEEE  (Volume:16 ,  Issue: 11 )