By Topic

Update-Based Cache Access and Replacement in Wireless Data Access

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hui Chen ; Memphis Univ., TN ; Yang Xiao ; Shen, Xuemin

Cache has been applied for wireless data access with different replacement policies in wireless networks. Most of the current cache replacement schemes are access-based replacement policies since they are based on object access frequency/recency information. Access-based replacement policies either ignore or do not focus on update information. However, update information is extremely important since it can make access information almost useless. In this paper, we consider two fundamental and strongly consistent access algorithms: poll-per-read (PER) and call-back (CB). We propose a server-based PER (SB-PER) cache access mechanism in which the server makes replacement decisions and a client-based CB cache access mechanism in which clients make replacement decisions. Both mechanisms have been designed to be suitable for using both update frequency and access frequency. We further propose two update-based replacement policies, least access-to-update ratio (LA2U) and least access-to-update difference (LAUD). We provide a thorough performance analysis via extensive simulations for evaluating these algorithms in terms of access rate, update rate, cache size, database size, object size, etc. Our study shows that although effective hit ratio is a better metric than cache hit ratio, it is a worse metric than transmission cost, and a higher effective hit ratio does not always mean a lower cost. In addition, the proposed SB-PER mechanism is better than the original PER algorithm in terms of effective hit ratio and cost, and the update-based policies outperform access-based policies in most cases

Published in:

Mobile Computing, IEEE Transactions on  (Volume:5 ,  Issue: 12 )