By Topic

Cache-Conscious Automata for XML Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
He, Bingsheng ; Dept. of Comput. Sci. & Eng., Hong Kong Univ. of Sci. & Technol., Kowloon ; Qiong Luo ; Byron Choi

Hardware cache behavior is an important factor in the performance of memory-resident, data-intensive systems such as XML filtering engines. A key data structure in several recent XML filters is the automaton, which is used to represent the long-running XML queries in the main memory. In this paper, we study the cache performance of automaton-based XML filtering through analytical modeling and system measurement. Furthermore, we propose a cache-conscious automaton organization technique, called the hot buffer, to improve the locality of automaton state transitions. Our results show that 1) our cache performance model for XML filtering automata is highly accurate and 2) the hot buffer improves the cache performance as well as the overall performance of automaton-based XML filtering

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:18 ,  Issue: 12 )