By Topic

Chemically Functionalized Multi-Walled Carbon Nanotube Sensors for Ultra-Low-Power Alcohol Vapor Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
7 Author(s)
Sin, M.L.Y. ; Centre for Micro and Nano Systems, The Chinese University of Hong Kong, Hong Kong SAR, China ; Chow, G.C.T ; Li, W.J. ; Leong, P.
more authors

We have successfully chemically functionalized the multi-walled carbon nanotubes (MWCNTs) with COOH group by the method of oxidation and used AC electrophoresis to formed these bundles MWCNTs between Au electrodes on the Si substrate. We then demonstrated that these resistive elements are capable of detecting alcohol vapor using an ultra-low input power of only ∼0.01μW. The sensors exhibit fast, repeatable, highly sensitive, and reversible response. Our results show that the resistances of the sensors vary linearly with alcohol vapor concentration from 5ppth to 100ppth (ppth = part per thousand). We can also easily reverse the initial resistance of the sensors by annealing them in real time at 100-250μA current within 1-6 minutes. We have experimental proof that the functionalized MWCNTs have a much higher sensitivity towards the alcohol vapor than the bare MWCNTs. Based on our experimental results, we prove that MWCNTs sensors, especially for those with proper functionalized groups, are sensitive to a wide range of alcohol vapor and potentially other volatile organic compounds, and are very attractive for commercialization due to their extreme low-power requirements for activation.

Published in:

Nanotechnology, 2006. IEEE-NANO 2006. Sixth IEEE Conference on  (Volume:2 )

Date of Conference:

17-20 June 2006