Cart (Loading....) | Create Account
Close category search window
 

Hierarchical K-means Clustering Using New Support Vector Machines for Multi-class Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu-Chiang Frank Wang ; Carnegie Mellon Univ., Pittsburgh ; Casasent, D.

We propose a binary hierarchical classification structure to address the multi-class classification problem with a new hierarchical design method, k-means SVRM (support vector representation machine) clustering. This greatly improves upon our prior IJCNN hierarchical design. At each node in the hierarchy, we apply the SVRDM (support vector representation and discrimination machine) classifier, which offers generalization and good rejection ability. We also provide new theoretical bases and methods for our choice of the kernel function and new SVRDM parameter selection rules. Classification and rejection test results are presented on new databases of both simulated and real infra-red (IR) data.

Published in:

Neural Networks, 2006. IJCNN '06. International Joint Conference on

Date of Conference:

0-0 0

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.