By Topic

Neural Networks, Fuzzy System, and Linear Models in Forecasting Exchange Rates: Comparison and Case Studies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. A. P. Santos ; Federal University of Santa Catarina, UFSC, Graduate Program in Economics, Box 476, Zip code 88040-900, Florianópolis, Santa Catarina, Brazil. E-mail: ; L. dos Santos Coelho

Artificial neural networks and fuzzy systems, have gradually established themselves as popular tools in approximating complicated nonlinear systems and time series forecasting. This paper investigates the hypothesis that the nonlinear mathematical models of multilayer perceptron and radial basis function neural networks and the Takagi-Sugeno (TS) fuzzy system are able to provide a more accurate out-of-sample forecast than the traditional autoregressive moving average (ARMA) and ARMA generalized autoregressive conditional heteroskedasticity (ARMA-GARCH) linear models. Using series of Brazilian exchange rate (R$/US$) returns with 15 min., 60 min., 120 min., daily and weekly basis, the out-pf-sample one-step-ahead forecast performance is compared. Results indicate that forecast performance is strongly related to the series' frequency and the forecasting evaluation shows that nonlinear models perform better than their linear counterparts. In the trade strategy based on forecasts, nonlinear models achieve higher returns when compared to a buy-and-hold strategy and to the linear models.

Published in:

The 2006 IEEE International Joint Conference on Neural Network Proceedings

Date of Conference:

0-0 0