By Topic

Model Selection via Bilevel Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bennett, K.P. ; Rensselaer Polytech. Inst., Troy ; Jing Hu ; Xiaoyun Ji ; Kunapuli, G.
more authors

A key step in many statistical learning methods used in machine learning involves solving a convex optimization problem containing one or more hyper-parameters that must be selected by the users. While cross validation is a commonly employed and widely accepted method for selecting these parameters, its implementation by a grid-search procedure in the parameter space effectively limits the desirable number of hyper-parameters in a model, due to the combinatorial explosion of grid points in high dimensions. This paper proposes a novel bilevel optimization approach to cross validation that provides a systematic search of the hyper-parameters. The bilevel approach enables the use of the state-of-the-art optimization methods and their well-supported softwares. After introducing the bilevel programming approach, we discuss computational methods for solving a bilevel cross-validation program, and present numerical results to substantiate the viability of this novel approach as a promising computational tool for model selection in machine learning.

Published in:

Neural Networks, 2006. IJCNN '06. International Joint Conference on

Date of Conference:

0-0 0