Cart (Loading....) | Create Account
Close category search window

Model Selection via Bilevel Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)
Bennett, K.P. ; Rensselaer Polytech. Inst., Troy ; Jing Hu ; Xiaoyun Ji ; Kunapuli, G.
more authors

A key step in many statistical learning methods used in machine learning involves solving a convex optimization problem containing one or more hyper-parameters that must be selected by the users. While cross validation is a commonly employed and widely accepted method for selecting these parameters, its implementation by a grid-search procedure in the parameter space effectively limits the desirable number of hyper-parameters in a model, due to the combinatorial explosion of grid points in high dimensions. This paper proposes a novel bilevel optimization approach to cross validation that provides a systematic search of the hyper-parameters. The bilevel approach enables the use of the state-of-the-art optimization methods and their well-supported softwares. After introducing the bilevel programming approach, we discuss computational methods for solving a bilevel cross-validation program, and present numerical results to substantiate the viability of this novel approach as a promising computational tool for model selection in machine learning.

Published in:

Neural Networks, 2006. IJCNN '06. International Joint Conference on

Date of Conference:

0-0 0

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.