Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Learning to Rank by Maximizing AUC with Linear Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ataman, K. ; Iowa Univ., Iowa City ; Street, W.N. ; Yi Zhang

Area Under the ROC Curve (AUC) is often used to evaluate ranking performance in binary classification problems. Several researchers have approached AUC optimization by approximating the equivalent Wicoxon-Mann-Whitney (WMW) statistic. We present a linear programming approach similar to 1-norm Support Vector Machines (SVMs) for instance ranking by an approximation to the WMW statistic. Our formulation can be applied to nonlinear problems by using a kernel function. Our ranking algorithm outperforms SVMs in both AUC and classification performance when using RBF kernels, but curiously not with polynomial kernels. We experiment with variations of chunking to handle the quadratic growth of the number of constraints in our formulation.

Published in:

Neural Networks, 2006. IJCNN '06. International Joint Conference on

Date of Conference:

0-0 0