By Topic

Venn-like models of neo-cortex patches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
F. B. de Lima Neto ; Member IEEE, Department of Computing Systems Polytechnic School of Engineering - Pernambuco State University, Recife 50720-001, Brazil. phone: +55 (0)81 2119-3855 extension 3842; fax: +55 (0)81 2119-3855 extension 3836; e-mail: ; P. De Wilde

This work presents a new architecture of artificial neural networks -Venn Networks, which produce localized activations in a 2D map while executing simple cognitive tasks. These activations resemble the ones observed in patches of the cerebral cortex when inspected by functional imaging methods such as fMRI. Venn-networks allow simultaneous incorporation of four distinct and independent concepts, all present in biological neural network. These concepts are (a) cyto-architectonic regions, (b) localization of functional activations, (c) complex pattern of intra-/interregional connectivity, and (d) definable damages to the neurons and axons. The dynamics of Venn-networks is highly influenced by these concepts. The proposed architecture incorporates both unsupervised and supervised learning paradigms; it also implements open and closed loops that can be assembled with afferent, efferent and U-flber type of connections. Venn-networks were devised to integrate in one single model the topographical representation of neural activations and also functional results evoked by these activations. Following the description of the architecture and its components, we present some simulation results that implement above-mentioned concepts (a), (b) and (c). In those simulations, virtual fingers are controlled by Venn-networks similarly to the sensorimotor feedback that controls fine movements of fingers in the CNS. The trained Venn-networks emulate the finger movements of a piano player performing The Sonata Facile of Mozart.

Published in:

The 2006 IEEE International Joint Conference on Neural Network Proceedings

Date of Conference:

0-0 0