Cart (Loading....) | Create Account
Close category search window
 

Global Reinforcement Learning in Neural Networks with Stochastic Synapses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaolong Ma ; Stony Brook Univ., Stony Brook ; Likharev, K.K.

We have found a more general formulation of the REINFORCE learning principle which had been proposed by R. J. Williams for the case of artificial neural networks with stochastic cells ("Boltzmann machines"). This formulation has enabled us to apply the principle to global reinforcement learning in networks with deterministic neural cells but stochastic synapses, and to suggest two groups of new learning rules for such networks, including simple local rules. Numerical simulations have shown that at least for several popular benchmark problems one of the new learning rules may provide results on a par with the best known global reinforcement techniques.

Published in:

Neural Networks, 2006. IJCNN '06. International Joint Conference on

Date of Conference:

0-0 0

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.