By Topic

Stress Induced Enhancement of Magnetization Reversal Process of DyFeCo Films With Perpendicular Magnetization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nakagawa, S. ; Dept. of Phys. Electron., Tokyo Inst. of Technol. ; Yamada, M. ; Tokuriki, N.

A method to control magnetization reversal in magnetic films with perpendicular magnetic anisotropy was demonstrated in this study. Alloys of rare earth-transition metals (RE-TM) with their extremely large anomalous Hall coefficient and relatively large magnetostriction constants were suitable to observe the stress induced anisotropy using anomalous Hall effect. Stress applied to the RE-TM thin films significantly reduced the perpendicular coercivity and nucleation field of the film in comparison with that of the film in stress-free condition. Dyx(Fe90Co10)1-x thin films revealed large Hall voltage and remarkable change in the coercivity under the mechanical tensile stress

Published in:

Magnetics, IEEE Transactions on  (Volume:42 ,  Issue: 11 )