By Topic

A Large Deviations Analysis of Scheduling in Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lei Ying ; Coordinated Sci. Lab., Illinois Univ., Urbana, IL ; Srikant, R. ; Eryilmaz, A. ; Dullerud, G.E.

In this correspondence, we consider a cellular network consisting of a base station and N receivers. The channel states of the receivers are assumed to be identical and independent of each other. The goal is to compare the throughput of two different scheduling policies (a queue-length-based (QLB) policy and a greedy policy) given an upper bound on the queue overflow probability or the delay violation probability. We consider a multistate channel model, where each channel is assumed to be in one of L states. Given an upper bound on the queue overflow probability or an upper bound on the delay violation probability, we show that the total network throughput of the (QLB) policy is no less than the throughput of the greedy policy for all N. We also obtain a lower bound on the throughput of the (QLB) policy. For sufficiently large N, the lower bound is shown to be tight, strictly increasing with N, and strictly larger than the throughput of the greedy policy. Further, for a simple multistate channel model-ON-OFF channel, we prove that the lower bound is tight for all N

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 11 )