Cart (Loading....) | Create Account
Close category search window
 

On the Deterministic-Code Capacity of the Two-User Discrete Memoryless Arbitrarily Varying General Broadcast Channel With Degraded Message Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hof, E. ; Israeli Defense Forces ; Bross, S.I.

An inner bound on the deterministic-code capacity region of the two-user discrete memoryless arbitrarily varying general broadcast channel (AVGBC) was characterized by Jahn, assuming that the common message capacity is nonzero; however, he did not indicate how one could decide whether the latter capacity is positive. Csiszaacuter and Narayan's result for the single-user arbitrarily varying channel (AVC) establishes the missing part in Jahn's characterization. Nevertheless, being based on Ahlswede's elimination technique, Jahn's characterization is not applicable for symmetrizable channels under state constraint. Here, the various notions of symmetrizability for the two-user broadcast AVC are defined. Sufficient non-symmetrizability condition that renders the common message capacity of the AVGBC positive is identified using an approach different from Jahn's. The decoding rules we use establish an achievable region under state and input constraints for the family of degraded message sets codes over the AVGBC

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 11 )

Date of Publication:

Nov. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.