Cart (Loading....) | Create Account
Close category search window
 

On the Multiuser Capacity of WDM in a Nonlinear Optical Fiber: Coherent Communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Taghavi, M.H. ; Electr. & Comput. Eng. Dept., California Univ., San Diego, La Jolla, CA ; Papen, G.C. ; Siegel, P.H.

Previous results suggest that the crosstalk produced by the fiber nonlinearity in a WDM system imposes a severe limit to the capacity of optical fiber channels, since the interference power increases faster than the signal power, thereby limiting the maximum achievable signal-to-interference-plus-noise ratio (SINR). We study this system in the weakly nonlinear regime as a multiple-access channel, and show that by optimally using the information from all the channels for detection, the change in the capacity region due to the nonlinear effect is minimal. On the other hand, if the receiver uses the output of only one wavelength channel, the capacity is significantly reduced due to the nonlinearity, and saturates as the interference power becomes comparable to the noise, which is consistent with earlier results. The results hold in channels with or without memory. Every point in the capacity region can be achieved without knowledge of the nonlinearity parameters at the transmitters. The structures of optimal/suboptimal receivers are briefly discussed

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 11 )

Date of Publication:

Nov. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.