By Topic

On the Stopping Redundancy of Reed–Muller Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
T. Etzion ; Dept. of Comput. Sci., Technion-Israel Inst. of Technol., Haifa

The stopping redundancy of the code is an important parameter which arises from analyzing the performance of a linear code under iterative decoding on a binary erasure channel. In this paper, we will consider the stopping redundancy of Reed-Muller codes and related codes. Let R(lscr,m) be the Reed-Muller code of length 2m and order lscr. Schwartz and Vardy gave a recursive construction of parity-check matrices for the Reed-Muller codes, and asked whether the number of rows in those parity-check matrices is the stopping redundancy of the codes. We prove that the stopping redundancy of R(m-2,m), which is also the extended Hamming code of length 2m, is 2m-1 and thus show that the recursive bound is tight in this case. We prove that the stopping redundancy of the simplex code equals its redundancy. Several constructions of codes for which the stopping redundancy equals the redundancy are discussed. We prove an upper bound on the stopping redundancy of R(1,m). This bound is better than the known recursive bound and thus gives a negative answer to the question of Schwartz and Vardy

Published in:

IEEE Transactions on Information Theory  (Volume:52 ,  Issue: 11 )