By Topic

A New Control Approach for a Robotic Walking Support System in Adapting User Characteristics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chuy, O. ; Dept. of Bioeng., Tohoku Univ., Sendai ; Hirata, Y. ; Kosuge, K.

This paper proposes a new control approach for a robotic walking support system to adapt a user's controlling characteristic. The control approach will be implemented by changing the kinematic structure of the robotic walking support system based on a variable center of rotation. This new control approach aims to help users who have difficulties in controlling their walking support system. In this study, we have a training stage to evaluate and adapt user's controlling characteristics. This will be implemented by allowing the user to follow some training paths. In the event a large path error occurs, a learning algorithm will vary the center of rotation of the support system until the user can successfully follow the training path. The relationship between the user intent in the form of applied force/torque and the new center of rotation will be taken by considering several training paths. This relationship will be used in actual control of the robotic walking support system. Experimentation and evaluation are presented to show the validity of the proposed control algorithm

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:36 ,  Issue: 6 )